LECTURE-8






Basic Concepts of Patterns
What is a pattern?
Part of a pattern
Some example patterns
Modeling a pattern with UML



What is a pattern?

What is a pattern?
* A common problem
—and a proven solution
— In a context
* A structured, packaged problem solution in literary form.
* A way of recording experience, “best practices”
— In a standard format
— A repository for knowledge
e “What’s new is that there’s nothing new here.
Patterns are about what works. Patterns give us a way to talk
about what works.” — Brian Foote, 1997.



Parts of a Pattern

e Name:
a good name is essential because pattern names help designers to communicate.

e Context:
where the pattern can be applied

e Forces:
to be balanced in the solution

e Problem:
usually describes in terms of the forces.

e Solution:
a proven way of balancing the forces



Some Example Patterns
Alexander pattern: Window place
Architectural pattern: MVC
Design pattern: Observer
Analysis pattern: Party



An Alexander Pattern - Window Place

e Name: Window Place
e Context and forces:
a room has a window and a place to sit
— We are drawn towards the light
— We want to sit comfortably
 Problem:
how to be comfortable and still near the natural light
e Solution:
place the comfortable sitting place near the
window (e.g., a window seat)



Architectural Pattern - MVC

e Name: MVC (Model-View-Controller)

e Context and forces: we have a data model and several representations of the
data

— We want to modularize the system
— Data representation must be kept up to date
e Problem: how to modularize the system

e Solution: the model holds the data (and does data modification), the view
represents the data, the controller handles user input

MVC Diagram Multiple Views of a Model




Design Patterns - Observer

 Name: Observer
e Context and forces: data is kept in one object and displayed in other objects

— We want to distribute the functions
— We want the system to stay consistent

e Problem: keep the information consistent

e Solution: the display objects observe the object holding the data and are notified of
changes in the data

Subject aovare
. , observers
attach(observer) Observer

detach(observer) update()
notify() .

Observer Control Flow

observers

subject

ConcreteObserver

ConcreteSubject update()

getState()
setState(newState)
subjectState

- ﬁ'li-.'ll'lgg notfication
observerState

—=—== requesis, modification




Analysis Pattern - Party

 Name: Party
e Context and forces:

we have people and organizations that both take on roles in the system

— We want to allow several types of entities
— We want to treat all entities consistently

e Problem: how can we treat them uniformly without complicating the diagrams?
e Solution: Add a party entity which unifies the two entities

Party Diagram

Before




Modeling a pattern with UML

i Client |

Client . Command

Application ) _---- Invoker
I

| .
. Recelver |
|-

PasteCommand

~~_ Recelve

Document

OpenCommand

Command ' Invoker

Menultem




Modeling a pattern with UML

addCommand()

>

V

execute()

>.

Receiver

receiver




Modeling a pattern with UML

¢ : Command

: Receiver

storeCommandi(c)

execute()

-




